Serveur d'exploration sur le LRGP

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Thermodynamic analysis of capillary flows in the presence of hydrodynamic slip

Identifieur interne : 000B43 ( Main/Exploration ); précédent : 000B42; suivant : 000B44

Thermodynamic analysis of capillary flows in the presence of hydrodynamic slip

Auteurs : A. Laouir [Algérie, France] ; Daniel Tondeur [France]

Source :

RBID : ISTEX:F27ACC3902EA2AD108A7B45B0769E45BB63D34EA

Descripteurs français

English descriptors

Abstract

A thermodynamic description of liquid flows in capillaries with hydrodynamic slip at the solid–liquid interface is given. Slip over the capillary wall brings into play surface interactions and therefore involves interfacial energy and entropy. Energy and entropy balance equations are written so as to take into account surface effects. The two relations constitute a general mathematical model that allows readily analyzing various situations and to explore the behavior of such thermodynamic process. The main result derived concerns the existence of a capillary pressure of slip; slip occurrence leads to a pressure decrease in the flow and might cause cavitation. The variation in magnitude of the slip effect, viewed as a thermodynamic transformation, may take place irreversibly. Slip irreversibility and the probable occurrence of a two‐phase flow regime are possible factors that may cause additional pressure drop. © 2010 American Institute of Chemical Engineers AIChE J, 2011

Url:
DOI: 10.1002/aic.12431


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Thermodynamic analysis of capillary flows in the presence of hydrodynamic slip</title>
<author>
<name sortKey="Laouir, A" sort="Laouir, A" uniqKey="Laouir A" first="A." last="Laouir">A. Laouir</name>
</author>
<author>
<name sortKey="Tondeur, D" sort="Tondeur, D" uniqKey="Tondeur D" first="D." last="Tondeur">Daniel Tondeur</name>
<affiliation>
<country>France</country>
<placeName>
<settlement type="city">Nancy</settlement>
<region type="region" nuts="2">Grand Est</region>
<region type="region" nuts="2">Lorraine (région)</region>
</placeName>
<orgName type="laboratoire" n="5">Laboratoire réactions et génie des procédés</orgName>
<orgName type="university">Université de Lorraine</orgName>
<orgName type="institution">Centre national de la recherche scientifique</orgName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:F27ACC3902EA2AD108A7B45B0769E45BB63D34EA</idno>
<date when="2011" year="2011">2011</date>
<idno type="doi">10.1002/aic.12431</idno>
<idno type="url">https://api.istex.fr/document/F27ACC3902EA2AD108A7B45B0769E45BB63D34EA/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">001624</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">001624</idno>
<idno type="wicri:Area/Istex/Curation">001624</idno>
<idno type="wicri:Area/Istex/Checkpoint">000065</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Checkpoint">000065</idno>
<idno type="wicri:doubleKey">0001-1541:2011:Laouir A:thermodynamic:analysis:of</idno>
<idno type="wicri:source">HAL</idno>
<idno type="RBID">Hal:hal-00559955</idno>
<idno type="url">https://hal.archives-ouvertes.fr/hal-00559955</idno>
<idno type="wicri:Area/Hal/Corpus">000B60</idno>
<idno type="wicri:Area/Hal/Curation">000B60</idno>
<idno type="wicri:Area/Hal/Checkpoint">000B33</idno>
<idno type="wicri:explorRef" wicri:stream="Hal" wicri:step="Checkpoint">000B33</idno>
<idno type="wicri:Area/Main/Merge">000C68</idno>
<idno type="wicri:source">INIST</idno>
<idno type="RBID">Pascal:11-0350806</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000191</idno>
<idno type="wicri:Area/PascalFrancis/Curation">000920</idno>
<idno type="wicri:Area/PascalFrancis/Checkpoint">000157</idno>
<idno type="wicri:explorRef" wicri:stream="PascalFrancis" wicri:step="Checkpoint">000157</idno>
<idno type="wicri:doubleKey">0001-1541:2011:Laouir A:thermodynamic:analysis:of</idno>
<idno type="wicri:Area/Main/Merge">000D14</idno>
<idno type="wicri:Area/Main/Curation">000B43</idno>
<idno type="wicri:Area/Main/Exploration">000B43</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Thermodynamic analysis of capillary flows in the presence of hydrodynamic slip</title>
<author>
<name sortKey="Laouir, A" sort="Laouir, A" uniqKey="Laouir A" first="A." last="Laouir">A. Laouir</name>
<affiliation wicri:level="1">
<country xml:lang="fr">Algérie</country>
<wicri:regionArea>Dept. of Mechanical Engineering, University of Jijel, BP 98, 18000 Jijel</wicri:regionArea>
<wicri:noRegion>18000 Jijel</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<country wicri:rule="url">France</country>
</affiliation>
<affiliation wicri:level="1">
<country xml:lang="fr">Algérie</country>
<wicri:regionArea>Correspondence address: Dept. of Mechanical Engineering, University of Jijel, BP 98, 18000 Jijel</wicri:regionArea>
<wicri:noRegion>18000 Jijel</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Tondeur, D" sort="Tondeur, D" uniqKey="Tondeur D" first="D." last="Tondeur">Daniel Tondeur</name>
<affiliation wicri:level="3">
<country xml:lang="fr">France</country>
<wicri:regionArea>Laboratoire des Sciences du Génie Chimique LSGC, BP 451, 54001 Nancy</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Grand Est</region>
<region type="old region" nuts="2">Lorraine (région)</region>
<settlement type="city">Nancy</settlement>
</placeName>
<placeName>
<settlement type="city">Nancy</settlement>
<region type="region" nuts="2">Grand Est</region>
<region type="region" nuts="2">Lorraine (région)</region>
</placeName>
<orgName type="laboratoire" n="5">Laboratoire réactions et génie des procédés</orgName>
<orgName type="university">Université de Lorraine</orgName>
<orgName type="institution">Centre national de la recherche scientifique</orgName>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">AIChE Journal</title>
<title level="j" type="alt">AICHE JOURNAL</title>
<idno type="ISSN">0001-1541</idno>
<idno type="eISSN">1547-5905</idno>
<imprint>
<biblScope unit="vol">57</biblScope>
<biblScope unit="issue">8</biblScope>
<biblScope unit="page" from="2251">2251</biblScope>
<biblScope unit="page" to="2263">2263</biblScope>
<biblScope unit="page-count">13</biblScope>
<publisher>Wiley Subscription Services, Inc., A Wiley Company</publisher>
<pubPlace>Hoboken</pubPlace>
<date type="published" when="2011-08">2011-08</date>
</imprint>
<idno type="ISSN">0001-1541</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0001-1541</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Aiche</term>
<term>Aiche journal</term>
<term>American institute</term>
<term>Atmospheric pressure</term>
<term>Boundary condition</term>
<term>Capillary</term>
<term>Capillary entrance</term>
<term>Capillary flow</term>
<term>Capillary pressure</term>
<term>Capillary radius</term>
<term>Capillary wall</term>
<term>Carbon nanotubes</term>
<term>Cavitation</term>
<term>Channel height</term>
<term>Circular capillaries</term>
<term>Colloid interface</term>
<term>Colloid interfaces</term>
<term>Constant temperature</term>
<term>Contact angle</term>
<term>Control volume</term>
<term>Cylindrical capillary</term>
<term>Cylindrical duct</term>
<term>Entropy</term>
<term>Entropy balance</term>
<term>Entropy balance equation</term>
<term>Entropy generation</term>
<term>Exit effects</term>
<term>Experimental investigation</term>
<term>Experimental investigations</term>
<term>Experimental results</term>
<term>Experimental works</term>
<term>Fluid mech</term>
<term>Free energy</term>
<term>Friction coefficient</term>
<term>General case</term>
<term>General rule</term>
<term>Hasegawa</term>
<term>Heat capacity</term>
<term>Heat mass transf</term>
<term>Heat transfer</term>
<term>Hydraulic radius</term>
<term>Hydrodynamic</term>
<term>Hydrodynamics</term>
<term>Hydrophobic microchannels</term>
<term>Interface</term>
<term>Interfacial energy</term>
<term>Internal energy</term>
<term>Irreversibility</term>
<term>Irreversible</term>
<term>Irreversible pressure drop</term>
<term>Isothermal flow</term>
<term>Liquid flow</term>
<term>Liquid solid interface</term>
<term>Mass transport</term>
<term>Mathematical model</term>
<term>Mechanical engineering conference</term>
<term>Microfluidics</term>
<term>Molar mass</term>
<term>Nite speed</term>
<term>Noncurved surface</term>
<term>Other hand</term>
<term>Overall enthalpy</term>
<term>Overall entropy</term>
<term>Parietal friction</term>
<term>Pgap</term>
<term>Pgap psat</term>
<term>Phys</term>
<term>Phys fluids</term>
<term>Physical chemistry</term>
<term>Porous medium</term>
<term>Potential energies</term>
<term>Pressure decrease</term>
<term>Pressure difference</term>
<term>Pressure drop</term>
<term>Pressure drop method</term>
<term>Pressure drop reduction</term>
<term>Pressure forces</term>
<term>Pressure variation</term>
<term>Previous sections</term>
<term>Prime importance</term>
<term>Psat</term>
<term>Psat psat</term>
<term>Rectangular channels</term>
<term>Reversibility</term>
<term>Reversible process</term>
<term>Same time</term>
<term>Saturation pressure</term>
<term>Saturation state</term>
<term>Small size capillaries</term>
<term>Solid surface</term>
<term>Such situation</term>
<term>Surface area</term>
<term>Surface effect</term>
<term>Surface effects</term>
<term>Surface energy</term>
<term>Surface interactions</term>
<term>Surface phenomena</term>
<term>Surface properties</term>
<term>Surface tension</term>
<term>Temperature change</term>
<term>Temperature variation</term>
<term>Thermodynamic</term>
<term>Thermodynamic analysis</term>
<term>Thermodynamic approach</term>
<term>Thermodynamic description</term>
<term>Thermodynamic process</term>
<term>Thermodynamic reversibility</term>
<term>Thermodynamic state</term>
<term>Thermodynamic system</term>
<term>Thermodynamic transformation</term>
<term>Thermodynamic work</term>
<term>Thermodynamics</term>
<term>Thin capillaries</term>
<term>Thin layer</term>
<term>Time interval</term>
<term>Total pressure drop</term>
<term>Two phase flow</term>
<term>Uniform capillary</term>
<term>Unit mass</term>
<term>Various situations</term>
<term>Velocity profile</term>
<term>Viscous</term>
<term>Viscous dissipation</term>
<term>Viscous flow</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Analyse thermodynamique</term>
<term>Cavitation</term>
<term>Ecoulement capillaire</term>
<term>Ecoulement diphasique</term>
<term>Ecoulement liquide</term>
<term>Effet surface</term>
<term>Entropie</term>
<term>Hydrodynamique</term>
<term>Interface liquide solide</term>
<term>Microfluidique</term>
<term>Milieu poreux</term>
<term>Modèle mathématique</term>
<term>Perte charge</term>
<term>Pression capillaire</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>Aiche</term>
<term>Aiche journal</term>
<term>American institute</term>
<term>Atmospheric pressure</term>
<term>Boundary condition</term>
<term>Capillary</term>
<term>Capillary entrance</term>
<term>Capillary pressure</term>
<term>Capillary radius</term>
<term>Capillary wall</term>
<term>Carbon nanotubes</term>
<term>Cavitation</term>
<term>Channel height</term>
<term>Circular capillaries</term>
<term>Colloid interface</term>
<term>Colloid interfaces</term>
<term>Constant temperature</term>
<term>Contact angle</term>
<term>Control volume</term>
<term>Cylindrical capillary</term>
<term>Cylindrical duct</term>
<term>Entropy</term>
<term>Entropy balance</term>
<term>Entropy balance equation</term>
<term>Entropy generation</term>
<term>Exit effects</term>
<term>Experimental investigation</term>
<term>Experimental investigations</term>
<term>Experimental results</term>
<term>Experimental works</term>
<term>Fluid mech</term>
<term>Free energy</term>
<term>Friction coefficient</term>
<term>General case</term>
<term>General rule</term>
<term>Hasegawa</term>
<term>Heat capacity</term>
<term>Heat mass transf</term>
<term>Heat transfer</term>
<term>Hydraulic radius</term>
<term>Hydrodynamic</term>
<term>Hydrophobic microchannels</term>
<term>Interface</term>
<term>Interfacial energy</term>
<term>Internal energy</term>
<term>Irreversibility</term>
<term>Irreversible</term>
<term>Irreversible pressure drop</term>
<term>Isothermal flow</term>
<term>Mass transport</term>
<term>Mechanical engineering conference</term>
<term>Molar mass</term>
<term>Nite speed</term>
<term>Noncurved surface</term>
<term>Other hand</term>
<term>Overall enthalpy</term>
<term>Overall entropy</term>
<term>Parietal friction</term>
<term>Pgap</term>
<term>Pgap psat</term>
<term>Phys</term>
<term>Phys fluids</term>
<term>Physical chemistry</term>
<term>Potential energies</term>
<term>Pressure decrease</term>
<term>Pressure difference</term>
<term>Pressure drop</term>
<term>Pressure drop method</term>
<term>Pressure drop reduction</term>
<term>Pressure forces</term>
<term>Pressure variation</term>
<term>Previous sections</term>
<term>Prime importance</term>
<term>Psat</term>
<term>Psat psat</term>
<term>Rectangular channels</term>
<term>Reversibility</term>
<term>Reversible process</term>
<term>Same time</term>
<term>Saturation pressure</term>
<term>Saturation state</term>
<term>Small size capillaries</term>
<term>Solid surface</term>
<term>Such situation</term>
<term>Surface area</term>
<term>Surface effects</term>
<term>Surface energy</term>
<term>Surface interactions</term>
<term>Surface phenomena</term>
<term>Surface properties</term>
<term>Surface tension</term>
<term>Temperature change</term>
<term>Temperature variation</term>
<term>Thermodynamic</term>
<term>Thermodynamic approach</term>
<term>Thermodynamic description</term>
<term>Thermodynamic process</term>
<term>Thermodynamic reversibility</term>
<term>Thermodynamic state</term>
<term>Thermodynamic system</term>
<term>Thermodynamic transformation</term>
<term>Thermodynamic work</term>
<term>Thermodynamics</term>
<term>Thin capillaries</term>
<term>Thin layer</term>
<term>Time interval</term>
<term>Total pressure drop</term>
<term>Uniform capillary</term>
<term>Unit mass</term>
<term>Various situations</term>
<term>Velocity profile</term>
<term>Viscous</term>
<term>Viscous dissipation</term>
<term>Viscous flow</term>
</keywords>
<keywords scheme="Wicri" type="topic" xml:lang="fr">
<term>Thermodynamique</term>
</keywords>
<keywords scheme="mix" xml:lang="en">
<term>hydrodynamic slip</term>
<term>microfluidics</term>
<term>porous media</term>
<term>surface phenomena</term>
<term>thermodynamics</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">A thermodynamic description of liquid flows in capillaries with hydrodynamic slip at the solid–liquid interface is given. Slip over the capillary wall brings into play surface interactions and therefore involves interfacial energy and entropy. Energy and entropy balance equations are written so as to take into account surface effects. The two relations constitute a general mathematical model that allows readily analyzing various situations and to explore the behavior of such thermodynamic process. The main result derived concerns the existence of a capillary pressure of slip; slip occurrence leads to a pressure decrease in the flow and might cause cavitation. The variation in magnitude of the slip effect, viewed as a thermodynamic transformation, may take place irreversibly. Slip irreversibility and the probable occurrence of a two‐phase flow regime are possible factors that may cause additional pressure drop. © 2010 American Institute of Chemical Engineers AIChE J, 2011</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>Algérie</li>
<li>France</li>
</country>
<region>
<li>Grand Est</li>
<li>Lorraine (région)</li>
</region>
<settlement>
<li>Nancy</li>
</settlement>
<orgName>
<li>Centre national de la recherche scientifique</li>
<li>Laboratoire réactions et génie des procédés</li>
<li>Université de Lorraine</li>
</orgName>
</list>
<tree>
<country name="Algérie">
<noRegion>
<name sortKey="Laouir, A" sort="Laouir, A" uniqKey="Laouir A" first="A." last="Laouir">A. Laouir</name>
</noRegion>
<name sortKey="Laouir, A" sort="Laouir, A" uniqKey="Laouir A" first="A." last="Laouir">A. Laouir</name>
</country>
<country name="France">
<noRegion>
<name sortKey="Laouir, A" sort="Laouir, A" uniqKey="Laouir A" first="A." last="Laouir">A. Laouir</name>
</noRegion>
<name sortKey="Tondeur, D" sort="Tondeur, D" uniqKey="Tondeur D" first="D." last="Tondeur">Daniel Tondeur</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Lorraine/explor/LrgpV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000B43 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000B43 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Lorraine
   |area=    LrgpV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     ISTEX:F27ACC3902EA2AD108A7B45B0769E45BB63D34EA
   |texte=   Thermodynamic analysis of capillary flows in the presence of hydrodynamic slip
}}

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Sat Nov 11 15:47:48 2017. Site generation: Wed Mar 6 23:31:34 2024